

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 —
layout: default
title: License
nav_order: 6
—

MeLanGE is licensed under the MIT License:

MIT License

Copyright (c) 2021 Sandra Godinho Silva

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 —
layout: default
title: MeLanGE configuration
nav_order: 3
—

MeLanGE configuration
To adapt MeLanGE to your needs, change the default parameters in the configuration file config.yaml:

	## Input
	# — Input
inputdir: “data”
genome_extension: “{genome}.fa”

Change the input directory where your genome files are located, or simply add them to the ‘data’ folder in the MeLanGE repository.
Make sure that all genomes have the same extension (e.g. .fa, .fna or .fasta) and change this setting in the configuration file accordingly.

	## Output
	# — Output directory
outdir: “results”
outdir_anno: “results/Annotation”
logdir: “logs”

	## Expectation value threshold
	# — Evalues:
cog_evalue: “1e-5”
pfam_evalue: “1e-5”

Perform feature selection
To apply feature selection to the annotation results, modify the configuration file config.yaml:

— Run Feature Selection (True or False)
FS: True

Upload the respective metadata file and change its path in the input section:

— Input
(…)
metadata: “data/metadata.csv”

 —
layout: default
title: MeLanGE description
nav_order: 1
—

MeLanGE Description

The problem
Machine learning is an area of artificial intelligence that is gaining popularity in all fields of knowledge, including modern research in the life sciences. However, its use in comparative genomics of bacteria, especially as a tool in microbiome studies, is still in its infancy. This is mainly because there are no easy-to-use tools that meet the needs of researchers. With the advent of high-throughput DNA sequencing technologies, the amount of genomic data available far exceeds the amount of data that is thoroughly analysed. This can be partly explained by the difficulties of sorting and comparing large amounts of data, which is usually computationally intensive and often intractable. However, such large comparative genomics studies can be essential to determine important genomic or functional traits of different groups of organisms based on phylogeny, taxonomy, ecosystem origin, etc.

Our solution
MeLanGe (Machine Learning for Genomics) aims to facilitate large-scale comparative genomic studies by combining different annotation schemes and machine learning techniques to rapidly detect characteristic features between genome/metagenome groups in highly complex datasets. MeLanGe performs automatic, multi-parallel genome annotations using various databases such as Pfam, COG, Kegg and CAZYmes and provides these annotations in a tabular format that can be used in further studies. In addition, MeLanGe can perform a semi-automatic feature selection process based on user-entered metadata to determine which key features better characterise each genome group.

Performance
In a pilot study, out of 6986 Pfam features identified in 1256 marine and terrestrial bacterial genomes of the family _Flavobacteriaceae_, MeLanGe was able to reduce the complexity of the dataset to only 81 features that show a high correlation with the origin of the organism and thus serve as indicators of environmental specialisation. In summary, this tool can be an important player in the transition of microbiome studies into the “Big Data” era and offers an unprecedented opportunity to easily explore large groups of genomes.

	
	
	

 —
layout: default
title: Installation & Execution
nav_order: 2
—

Installation & Execution

MeLanGE is designed as a [Snakemake](https://snakemake.readthedocs.io) workflow that allows all steps to be executed in parallel on a cluster.

Step 0: MeLanGE dependencies
To run MeLanGE you need to have [conda](https://docs.conda.io/en/latest/) (or the simplest version - [miniconda](https://docs.conda.io/en/latest/miniconda.html)), [Snakemake](https://snakemake.readthedocs.io) and [Git](https://git-scm.com/) installed.

Install conda

To install conda, follow the instructions in conda documentation: [Conda](https://conda.io/docs/).
Most users will probably want to install [Miniconda](https://conda.io/miniconda.html).

If you have not already done so, you will need to configure conda with the bioconda-channel and the conda-forge channel:

conda config –add channels defaults
conda config –add channels bioconda
conda config –add channels conda-forge

Install mamba (optional)
Conda can be a bit slow because there are so many packages. A good way around this is to use [Mamba](https://anaconda.org/conda-forge/mamba) (another snake).

conda install mamba

From now on you can replace conda install with mamba install (check how much faster this snake is!)

Install snakemake
After installing conda (and optionally mamba), install [Snakemake](https://snakemake.readthedocs.io/en/stable/getting_started/installation.html):

mamba create -c conda-forge -c bioconda -n snakemake snakemake
conda activate snakemake

Install git
To run MeLange, you need to have git installed to clone the [MeLanGE repository](https://github.com/sandragodinhosilva/MeLanGE).

Instructions for installing git can be found at: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Step 1: Clone MeLanGE workflow
To use MeLanGE, you need a local copy of the [MeLanGE workflow repository](https://github.com/sandragodinhosilva/MeLanGE). Start by creating a clone of the repository:

git clone https://github.com/sandragodinhosilva/MeLanGE.git

Now you should have a folder called MeLanGE. In it you will find everything you need to run this workflow. To enter inside:

cd MeLanGE

Optional: Test the correct installation with sample data
To test the correct installation of MeLanGE, you can use [example data](https://github.com/sandragodinhosilva/MeLanGE/tree/master/example_data). This data will be downloaded automatically when you clone the MeLanGE repository. Simply ensure the following setting in the config.yaml file:

— Input
inputdir: “example_data”

Test your configuration by doing a dry-run via:

snakemake –use-conda -n

Step 2: Configure workflow
Configure the workflow according to your needs by editing the file config.yaml.

To edit the config.yaml file you can use a text editor of your choice.
For example with [nano](https://www.nano-editor.org/):

nano config.yaml

	## Useful commands:
	Ctrl+O Offer to write file (“Save as”)
Ctrl+X Close buffer, exit from nano

For more information on customising this configuration file, see the section [MeLanGE Configuration](https://sandragodinhosilva.github.io/MeLanGE/configuration.html)

Step 3: Execute workflow

Execute the workflow locally via

snakemake –use-conda –cores N

This will run the workflow locally using N cores.

Optional steps
Examine workflow:

Snakemake has some cool features implemented in MeLanGE. One of them is the ability to automatically create a directed acyclic graph (DAG) of jobs that allows visualisation of the entire workflow.

By executing a single command:

snakemake –dag | dot -Tsvg > dag.svg

A DAG (saved as an .svg image) is created. It contains a node for each order, with the edges connecting them representing the dependencies. The frames of jobs that do not need to be executed (because their output is up to date) are dashed.

Example:

Investigate results:

After successful execution, you can create a self-contained interactive HTML report with all results via:

snakemake –report report.html

Extra: Run MeLanGE on a high performance cluster

Snakemake can make use of cluster engines. In this case, Snakemake simply needs to be given a submit command that accepts a shell script as first positional argument:

snakemake –cluster qsub –use-conda –jobs 4

	CAZymes

Tool [dbcan](https://github.com/linnabrown/run_dbcan)
Standalone version of dbcan.

	MEROPS

A local database is created from [MEROPS](ftp://ftp.ebi.ac.uk/pub/databases/merops/current_release/merops_scan.lib).
Then a blastp against faa files is performed.

from nav.html - removed:
{}
{%- assign sections = sections | split: “|” | uniq | sort %}
{%- for section in sections %}

<p class=”caption”>{{ section }}</p>
{%- for nav_item in nav %}

{%- assign path_array = nav_item.dir | split: “/” %}
{%- assign page_section = path_array[1] %}
{%- if page_section == section and nav_item.hide != true and nav_item.nav_exclude != true %}

	{%- if nav_item.url == page.url %}
	{%- include toc.html html=content sanitize=true h_max=4 item_class=”toctree-l%level%” %}
{%- if nav_item.url == page.url %}

{%- assign previous_page = last_loop_page %}
{%- assign set_next_page = true %}

{%- endif %}

	{%- else %}
	
	
	
	<li class=”toctree-l1”>
	{{ nav_item.title }}

{%- assign last_loop_page = nav_item %}
{%- if set_next_page %}

{%- assign next_page = nav_item %}
{%- assign set_next_page = false %}

{% endif %}

{%- endif %}

{%- endif %}

{%- endfor %}

{%- endfor %}

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

